
CSC 108H: Introduction to Computer
Programming

Summer 2012

Marek Janicki

July 5th 2012

Administration

● Midterms are being graded this Saturday and Monday.

● If they will be finished by Monday office hours, this will
be posted on Piazza, otherwise they will be returned in
next week's lecture.

● The next Exercise will be posted this Saturday.

● Help Centre is in BA2270 2-4 M-R.

July 5th 2012

Review: None

● We have seen lots of types.
● bool, str, int, etc.

● Each of these types can take on several
possible values:
● True, False
● any integer
● any str

● We have also seen NoneType
● This type has one element: None

July 5th 2012

Review: None

● None is meant to represent no type.
● So expressions that don't evaluate to any type

evaluate to None.
● So function calls and methods that don't return

anything evaluate to None.

July 5th 2012

Review: Modules

● Modules are a way to group related bits of
code.

● Each .py file is its own module.
● The module name is the file name without the file

extention.

● We use import module_name to load a
module.

● And module_name.module_element to use
any functions or variables defined in the
module.

July 5th 2012

Code Correctness

● Given that we've written some code how do we
know that it does what we want?

● Option 1: Prove it is correct.
● Difficult and time consuming.
● Needs a lot of background.
● Often seems much stronger than required.

● Option 2:
● Argue that the code works on a 'representative' set

of inputs, therefore is correct.

July 5th 2012

Option 2

● This is doing Testing.
● What do we want from our Tests?

● Easy to reuse.
– So that if we rewrite our code, we don't need to rewrite

the tests.
● The should be separate code from the code that is

being tested.
– Again, so that we don't need to rewrite the tests.

● The should cover enough inputs that they convince
us that the code works.

July 5th 2012

Testing Reuse

● Ideally, we have tests that we don't need to
change when we change the function that we
are testing.

● The only time this should change is is we
decide that we need to change what a function
does.
● That is, we've decided our overall program structure

is a dead end, and we need to change big parts of
it.
– This is call refactoring, and it is undesirable.

July 5th 2012

Testing Reuse

● One way to ensure that tests can be reused is
to keep them in a separate file, and have them
only rely on the docstring of the things we test.

● This means that as long as each function does
the same thing, we can keep running the same
tests.

July 5th 2012

Test Selection

● What do we test?
● For a given function, what inputs do we test?
● Which functions do we test?

July 5th 2012

Testing Inputs

● What do we test?
● We can't test all inputs.
● So we need to choose a subset that is

representative.
● We can have 'typical inputs'.
● We can test things where we might suspect

programmer error.
● We can test 'boundary conditions' that we suspect

might have been overlooked.

July 5th 2012

Testing Inputs

● 'Typical Inputs'
● Think about why you are writing a function, and how

you think it will be used.
● Then take some canonical examples of this.
● Often times here it is useful to test things on several

randomised inputs.
– This will be covered after covering classes.

July 5th 2012

Testing Inputs

● It is useful to think 'adversarially' when picking
test cases.
● That is, try to picture yourself as an adversary trying

to break a program.
● But do so without cheating, so if the docstring

specifies some kind of input, limit yourself to those
inputs.

● But within those inputs try and choose as bad inputs
as you can.

● These type of inputs are often called corner cases.

July 5th 2012

Break, the first.

July 5th 2012

Writing Tests

● So given that we know what our test cases are,
how do we actually write tests to test them.

● Python has two built-in modules to help with
testing.
● nose
● unittest

● We use nose in this course.
● unittest is class-based.

July 5th 2012

Testing with Nose

● The context for testing with nose is that we
have a module named mod.

● We want to test some or all of the functions in it.
● To do this we create a module called
test__mod.

● In this module we import nose and we
import mod.

● For each function func and behaviour we want
to test, we have a test__func_behav()
function.

July 5th 2012

Testing with Nose.

● So it's usually useful to keep 'typical' input tests in separate
functions from 'adversarial' test.

● We have:

if __name__ == '__main__':

 nose.runmodule()

● This runs every test function in our test module.

● The output of this is tells us whether each test succeeded,
failed, or generated an Error.

July 5th 2012

Test Functions.

● What do we put in the body of a test function?
● Going in we know what test cases we want to test,

and we know the outputs we expect.
● We want to test if the actual output of the function is

the same as what we want it to be.
● In the body of test__func() we have assert statements.

● assert (boolean condition) will do nothing if the
condition is true, but will throw an error if it's false.

● So test__func() has a bunch of statements like:

● assert func(input) == (expected_output)

July 5th 2012

Nose Output

● The first line of output tells us the result of the
tests.
● a dot means pass, an F means fail, an E means an

error.
● So, a failure is incorrect output, an error is an

exception of some kind.
● Each failure or error produces information about

that failure or error.
● The last bit tells us the number of tests passes, the

number of tests failed, and the number of errors.

July 5th 2012

Nose Output

● The information about the errors so far is just
the error information that python gives back to
us.

● If we fail a test we can an 'AssertionError'.
● If we want to add some information to this, we

can put in a string after a comma in the assert
statement.

assert (condition), "Some String."

July 5th 2012

Designing Nose Test Files

● It is useful to test every function you write
seperately.
● Called unittesting.
● Nose makes this easy.

● Writing one big test for a function that calls
other functions is a terrible idea.
● It makes tracking down bugs really hard.

● If you change the implementation of a function,
the nose test file doesn't need to be changed.
● Regression testing is the idea of testing different

versions of software to ensure no new bugs exist.

July 5th 2012

Break, the second.

July 5th 2012

Writing Code

● In the first lecture, we talked about the design,
code, verify paradigm.

● Design a program to solve the problem.
● Code the design you have settled on.
● Verify that the code satisfies the design.

July 5th 2012

Design, Code, Verify and Testing

● This does not mean that you shouldn't think
about testing until the end.

● Verify is essentially running test cases, but
testing is part of all three steps.

July 5th 2012

Design

● The first step is to design your code. This
means designing the modules, figuring out
helper functions and things like that.

● It can be very tempting to go to code as soon
as you have a design that seems plausible.
● But a bad design means massive hours of code

investment.

● Already at the design phase you should be
trying to think adversarially about your design.
● Try and break it.

July 5th 2012

Design

● Designing Code isn't all whiteboard/scrap paper
stuff.

● A good step when writing out a big project is to
create function stubs for all the things you will
write.
● A function stub is a function definition and docstring

with no body (i.e., the body is pass).

● As soon as you have a docstring, you can write
test cases for the function.

July 5th 2012

Transitioning from Design to Code.

● As soon as you have a docstring, you can write
test cases for the function.

● Test cases should be the first real code you
write.
● This because we want them to be

implementation independent.
● Once you've written your test cases, you should

start writing the actual code.

July 5th 2012

Writing Code

● Try to write code 'bottom up'.
● That is, start with functions that don't call

other functions that you've written.
● As soon as you've finished writing a function,

test it immediately.
● The easiest time to fix/find errors is when the

function is fresh in your mind.

July 5th 2012

Writing Code

● If you're writing, that doesn't mean you don't
need to worry about design anymore.
● You may find that something is difficult, and that a

helper function you haven't designed would in fact
be really useful.

● When this happens, you should take a step back,
ensure that your overall design is still good, and
then think about and write test cases for this helper
function.

July 5th 2012

Verify

● When you're done writing everything, and
everything passes the tests, it's time to step
back and ensure that you have good test
coverage.

● Now that you've written the code, you should
have a better intuition for your design, and
should be better able to think or corner cases
that can break it.

July 5th 2012

Design Code Verify

● This is a useful overall strategy.
● But it is also useful as a sub-strategy for every

function that you write.
● In some sense at every meta-level of

programming you should be trying to implement
this.

July 5th 2012

Testing Summary

● Want individual Unit tests.
● These should be independent of eachother.
● There should be some generic ones, and some

chosen 'adversarially'.

● Want to design tests before writing code.
● Makes for more robust code and more robust tests.

● Want to rerun tests when we change code.
● How does Nose do this?

July 5th 2012

Nose and Testing

● Unit Tests.
● Each test in nose is its own function, so we can

write a function for each unit test we want.

● Designing Tests Early.
● All we need to write test in nose is the docstrings for

the function.
● The tests treat functions as a black box.

● Regression Testing.
● Nose makes it quite easy to run all the tests we

have whenever we want.

July 5th 2012

So you have an Error,

● If you find an error, you need to debug it, a
process that is often painful.

● There are a few ways to mitigate this pain.
● Test early! Test Often.
● Read the error information, and use it to see if the

code is correct at the point of the error.
● Backtrack to the first point that the code differs from

what you think it would be.
● Run through the code in your head to make sure

that if everything goes the way you think, the code
will work.

July 5th 2012

Dictionary Review

● Unsorted sets of (key, value) pairs.
● Keys in a dictionary are unique.
● Values can be accessed with
dict_name[key]

● {} is an empty dictionary.

● dict_name[key] = value adds a (key,
value) pair to the dictionary.
● If the key already exists, the value associated

with it is overwritten.

July 5th 2012

Dictionary Review

● key in dict_name is True iff there is a value
associated with that key in dict_name.

● dict_name.keys() returns a list of keys.

● dict_name.values() returns a list of values

● dict_name.pop(key) removes a key value pair
from the dictionary.

● dict_name.copy() generates a copy of the
dictionary.

● d1.update(d2) adds all the key value pairs in d2 to
d1.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

