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Administration

● Midterms are being graded this Saturday and Monday.

● If they will be finished by Monday office hours, this will 
be posted on Piazza, otherwise they will be returned in 
next week's lecture.

● The next Exercise will be posted this Saturday.

● Help Centre is in BA2270 2-4 M-R.
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Review: None

● We have seen lots of types.
● bool, str, int, etc.

● Each of these types can take on several 
possible values:
● True, False
● any integer
● any str

● We have also seen NoneType
● This type has one element: None
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Review: None

● None is meant to represent no type.
● So expressions that don't evaluate to any type 

evaluate to None.
● So function calls and methods that don't return 

anything evaluate to None.
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Review: Modules

● Modules are a way to group related bits of 
code.

● Each .py file is its own module.
● The module name is the file name without the file 

extention.

● We use import module_name to load a 
module.

● And module_name.module_element to use 
any functions or variables defined in the 
module.
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Code Correctness

● Given that we've written some code how do we 
know that it does what we want?

● Option 1: Prove it is correct.
● Difficult and time consuming.
● Needs a lot of background.
● Often seems much stronger than required.

● Option 2: 
● Argue that the code works on a 'representative' set 

of inputs, therefore is correct.
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Option 2

● This is doing Testing.
● What do we want from our Tests?

● Easy to reuse.
– So that if we rewrite our code, we don't need to rewrite 

the tests.
● The should be separate code from the code that is 

being tested.
– Again, so that we don't need to rewrite the tests.

● The should cover enough inputs that they convince 
us that the code works.
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Testing Reuse

● Ideally, we have tests that we don't need to 
change when we change the function that we 
are testing.

● The only time this should change is is we 
decide that we need to change what a function 
does.
● That is, we've decided our overall program structure 

is a dead end, and we need to change big parts of 
it.
– This is call refactoring, and it is undesirable.
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Testing Reuse

● One way to ensure that tests can be reused is 
to keep them in a separate file, and have them 
only rely on the docstring of the things we test.

● This means that as long as each function does 
the same thing, we can keep running the same 
tests.
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Test Selection

● What do we test?
● For a given function, what inputs do we test?
● Which functions do we test?
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Testing Inputs

● What do we test?
● We can't test all inputs.
● So we need to choose a subset that is 

representative.
● We can have 'typical inputs'.
● We can test things where we might suspect 

programmer error.
● We can test 'boundary conditions' that we suspect 

might have been overlooked.
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Testing Inputs

● 'Typical Inputs'
● Think about why you are writing a function, and how 

you think it will be used.
● Then take some canonical examples of this.
● Often times here it is useful to test things on several 

randomised inputs.
– This will be covered after covering classes.
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Testing Inputs

● It is useful to think 'adversarially' when picking 
test cases.
● That is, try to picture yourself as an adversary trying 

to break a program.
● But do so without cheating, so if the docstring 

specifies some kind of input, limit yourself to those 
inputs.

● But within those inputs try and choose as bad inputs 
as you can.

● These type of inputs are often called corner cases.
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Break, the first.
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Writing Tests

● So given that we know what our test cases are, 
how do we actually write tests to test them.

● Python has two built-in modules to help with 
testing.
● nose
● unittest

● We use nose in this course.
● unittest is class-based.
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Testing with Nose

● The context for testing with nose is that we 
have a module named mod.

● We want to test some or all of the functions in it.
● To do this we create a module called 
test__mod.

● In this module we import nose and we 
import mod.

● For each function func and behaviour we want 
to test, we have a test__func_behav() 
function.
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Testing with Nose.

● So it's usually useful to keep 'typical' input tests in separate 
functions from 'adversarial' test.

● We have:

if __name__ == '__main__':

    nose.runmodule()

● This runs every test function in our test module.

● The output of this is tells us whether each test succeeded, 
failed, or generated an Error.
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Test Functions.

● What do we put in the body of a test function?
● Going in we know what test cases we want to test, 

and we know the outputs we expect.
● We want to test if the actual output of the function is 

the same as what we want it to be.
● In the body of test__func() we have assert statements.

● assert (boolean condition) will do nothing if the 
condition is true, but will throw an error if it's false.

● So test__func() has a bunch of statements like:

● assert func(input) == (expected_output)
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Nose Output

● The first line of output tells us the result of the 
tests.
● a dot means pass, an F means fail, an E means an 

error.
● So, a failure is incorrect output, an error is an 

exception of some kind.
● Each failure or error produces information about 

that failure or error.
● The last bit tells us the number of tests passes, the 

number of tests failed, and the number of errors.
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Nose Output

● The information about the errors so far is just 
the error information that python gives back to 
us.

● If we fail a test we can an 'AssertionError'.
● If we want to add some information to this, we 

can put in a string after a comma in the assert 
statement.

assert (condition), "Some String."



July 5th 2012

Designing Nose Test Files

● It is useful to test every function you write 
seperately.
● Called unittesting.
● Nose makes this easy.

● Writing one big test for a function that calls 
other functions is a terrible idea.
● It makes tracking down bugs really hard.

● If you change the implementation of a function, 
the nose test file doesn't need to be changed.
● Regression testing is the idea of testing different 

versions of software to ensure no new bugs exist.
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Break, the second.
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Writing Code

● In the first lecture, we talked about the design, 
code, verify paradigm.

● Design a program to solve the problem.
● Code the design you have settled on.
● Verify that the code satisfies the design.
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Design, Code, Verify and Testing

● This does not mean that you shouldn't think 
about testing until the end.

● Verify is essentially running test cases, but 
testing is part of all three steps.
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Design

● The first step is to design your code. This 
means designing the modules, figuring out 
helper functions and things like that.

● It can be very tempting to go to code as soon 
as you have a design that seems plausible.
● But a bad design means massive hours of code 

investment.

● Already at the design phase you should be 
trying to think adversarially about your design.
● Try and break it.
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Design

● Designing Code isn't all whiteboard/scrap paper 
stuff.

● A good step when writing out a big project is to 
create function stubs for all the things you will 
write.
● A function stub is a function definition and docstring 

with no body (i.e., the body is pass).

● As soon as you have a docstring, you can write 
test cases for the function.
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Transitioning from Design to Code.

● As soon as you have a docstring, you can write 
test cases for the function.

● Test cases should be the first real code you 
write.
● This because we want them to be 

implementation independent.
● Once you've written your test cases, you should 

start writing the actual code.
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Writing Code

● Try to write code 'bottom up'.
● That is, start with functions that don't call 

other functions that you've written.
● As soon as you've finished writing a function, 

test it immediately.
● The easiest time to fix/find errors is when the 

function is fresh in your mind.
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Writing Code

● If you're writing, that doesn't mean you don't 
need to worry about design anymore.
● You may find that something is difficult, and that a 

helper function you haven't designed would in fact 
be really useful.

● When this happens, you should take a step back, 
ensure that your overall design is still good, and 
then think about and write test cases for this helper 
function.
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Verify

● When you're done writing everything, and 
everything passes the tests, it's time to step 
back and ensure that you have good test 
coverage.

● Now that you've written the code, you should 
have a better intuition for your design, and 
should be better able to think or corner cases 
that can break it.
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Design Code Verify

● This is a useful overall strategy.
● But it is also useful as a sub-strategy for every 

function that you write.
● In some sense at every meta-level of 

programming you should be trying to implement 
this.
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Testing Summary

● Want individual Unit tests.
● These should be independent of eachother.
● There should be some generic ones, and some 

chosen 'adversarially'.

● Want to design tests before writing code.
● Makes for more robust code and more robust tests.

● Want to rerun tests when we change code.
● How does Nose do this?
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Nose and Testing

● Unit Tests.
● Each test in nose is its own function, so we can 

write a function for each unit test we want.

● Designing Tests Early.
● All we need to write test in nose is the docstrings for 

the function.
● The tests treat functions as a black box.

● Regression Testing.
● Nose makes it quite easy to run all the tests we 

have whenever we want.
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So you have an Error,

● If you find an error, you need to debug it, a 
process that is often painful.

● There are a few ways to mitigate this pain.
● Test early! Test Often.
● Read the error information, and use it to see if the 

code is correct at the point of the error.
● Backtrack to the first point that the code differs from 

what you think it would be.
● Run through the code in your head to make sure 

that if everything goes the way you think, the code 
will work.
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Dictionary Review

● Unsorted sets of (key, value) pairs.
● Keys in a dictionary are unique.
● Values can be accessed with 
dict_name[key]

● {} is an empty dictionary.

● dict_name[key] = value adds a (key, 
value) pair to the dictionary.
● If the key already exists, the value associated 

with it is overwritten.
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Dictionary Review

● key in dict_name is True iff there is a value 
associated with that key in dict_name.

● dict_name.keys() returns a list of keys.

● dict_name.values() returns a list of values

● dict_name.pop(key) removes a key value pair 
from the dictionary.

● dict_name.copy() generates a copy of the 
dictionary.

● d1.update(d2) adds all the key value pairs in d2 to 
d1.
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